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Example

40 people speak French and 30 people speak German in a classroom. 20 people
speak both. Everyone speaks 1 language at least. How many people are there?
Answer: 50
When we add 40 and 30, we get 70. However, we count the students who speak
both two times. Thus, we have to subtract the number of students who speak
both. When we subtract 20 from 70, we get 50. We can state our problem as
| A | + | B | − | A ∩ B |=| A ∪ B | where | A | represents French speakers and
| B | represents German speakers. It can be shown in Venn Diagram as follows:
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Theorem (Principle of Inclusion and Exclusion)

PIE stands for the Principle of Inclusion and Exclusion and is used to avoid
over counting and over subtracting. The generalized formula for PIE is:∣∣∣∣∣

n⋃
i=1

Sk

∣∣∣∣∣ = ∑
I⊆[n]

(−1)(|I |+1)

∣∣∣∣∣⋂
i∈l

Si

∣∣∣∣∣

The language problem we just gave is an example for PIE. In the formula, the
left side is | S1 | ∪ | S2 | ∪ | S3 | · · · | Sk |. The right side indicates that if the
number of intersecting sets is odd, we add the intersection. If the number of
intersecting sets is even, we subtract the intersection. For example, the right
side says that | S1 ∩ S2 | is subtracted and | S1 ∩ S2 ∩ S3 | is added.
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Now, we are going to use PIE in a hard problem which seems irrelevant to PIE.

Example

N = 3× 5× 7× 11 How many numbers which are smaller than N have greatest
common divisor as 1 with N? Answer: 2× 4× 6× 10

Solution

1.| S1 | The numbers which are divisible by 3.
2.| S2 | The numbers which are divisible by 5.
3.| S3 | The numbers which are divisible by 7.
4.| S4 | The numbers which are divisible by 11.
5.The number of alternatives we don’t want is | S1 | + | S2 | + | S3 | + | S4 |
−(| S1 ∩ S2 | + | S1 ∩ S3 | · · · ) + (| S1 ∩ S2 ∩ S3 · · · )− (| S1 ∩ S2 ∩ S3 ∩ S4).
6.When we subtract them from all of the alternatives, we get our answer.
7.We could write it as
N(1− ( 1

3
+ 1

5
+ 1

7
+ 1

11
) + ( 1

3×5
+ 1

3×7
+ · · · )− ( 1

3×5×7
+ · · · ) + ( 1

3×5×7×11
)) =

N(1− 1
3
)(1− 1

5
)(1− 1

7
)(1− 1

11
)).

8. We get 2× 4× 6× 10.
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Theorem (Catalan Numbers)

Let’s say there are n (+1)’s and n (-1)’s. When these are arranged and added
from left to right, the sum is always zero or bigger. That means that the
number of (-1)’s is never larger than the number of (+1)’s. Cn is the number
of arrangements which satisfy that. The closed formula for Cn is Cn = 1

n+1

(
2n
n

)
.

For example, let’s say that there are 2 (-1)’s and 2 (+1)’s.
1.(+1),(+1),(-1),(-1) is okay.
2.(+1),(-1),(+1),(-1) is okay.
3.(-1),(-1),(+1),(+1) is NOT okay.
4.(+1),(-1),(-1), (+1) is NOT okay.
Catalan numbers are the numbers of arrangements which are OKAY.
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Example

There are 3 open parenthesis and 3 closed parenthesis. In how many ways can
these parenthesis be arranged that no parenthesis are left open? Answer: 5

Here, open parenthesis is same with +1 and closed parenthesis is same with -1.
For example: (+1),(-1),(+1),(-1),(+1),(-1) is same with ( ) ( ) ( ).
Thus, all we have to do is placing n with 3 in the closed formula. 1

4

(
6
3

)
= 5.
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Example

In a 4× 4 map, a car has to go from A to C. It can touch the diagonal but
cannot pass it. It can only move to right and up. How many ways are there?

Answer: 336

In order not to pass the diagonal, the number of vertical moves shouldn’t pass
the number of horizontal moves. There should be 4 vertical and 4 horizontal
moves. The vertical moves should be same as -1 and horizontal moves should
be +1. For example, (+1),(+1),(-1),(-1),(-1),(+1),(+1),(-1) is equivalent to:
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The Domino Tiling Problem

Determine how many ways to cover 2× 100 board using 1× 2 dominos.

Solution

We define F (n) to be the number of ways to cover a 2× n board. To solve the
tiling problem, we can consider two primary cases:

Case 1: Horizontal Placement. Placing a horizontal domino covers two
consecutive cells in one row, requiring another horizontal domino directly
beneath it. This reduces the problem to F (n − 2).

Case 2: Vertical Placement. Placing a vertical domino covers one cell in
each row, leaving a smaller 2× (n − 1) board, hence, F (n − 1).
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Recurrence Relation

The recursion for this problem is derived as:

F (n) = F (n − 1) + F (n − 2)

This relation resembles the Fibonacci sequence, with initial conditions:

F (0) = 1 (empty board)

F (1) = 1 (single vertical domino)

Consequently, F (n) follows the Fibonacci sequence shifted by one position.
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Challenge

Prove why

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(
1−

√
5

2

)n
]

Hints: (1. Use the recursive formula Fn = Fn−1 + Fn−2.
2. Find a geometric sequence which satisfies the recursive formula. (A
geometric sequence is a, ar , ar 2, ar 3 · · · ) Then solve for X n = X n−1 + X n−2).
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Generating Closed Forms

Now we are going to take a look at how to create an explicit formula from a
recursive formula.

Example

Xn = 4Xn−1 − 3Xn−2 X0 = 3 and X1 = 7 What is the explicit formula?

1. We should find a geometric sequence which satisfies the recursive formula so
we write X n = 4X n−1 − 3X n−2.
2. (x − 1)(x − 3) = 0. x = 1 and x = 3.
3. Since there are two possible geometric sequences, we algebraically combine
them and set up the equations as 3 = A+B and 7 = A+ 3B. (3 is X0 and 7 is
X1)
4.We find A = 1 and B = 2. Thus, the explicit formula of this recursive
formula is Xn = 1 + 2(3)n.
The method we used in our example is the same with the one used in proof of
the Fibonacci explicit formula.

Quinten Jin, Emre Kocaman Combinatorics



Generating Closed Forms

Now we are going to take a look at how to create an explicit formula from a
recursive formula.

Example

Xn = 4Xn−1 − 3Xn−2 X0 = 3 and X1 = 7 What is the explicit formula?

1. We should find a geometric sequence which satisfies the recursive formula so
we write X n = 4X n−1 − 3X n−2.
2. (x − 1)(x − 3) = 0. x = 1 and x = 3.
3. Since there are two possible geometric sequences, we algebraically combine
them and set up the equations as 3 = A+B and 7 = A+ 3B. (3 is X0 and 7 is
X1)
4.We find A = 1 and B = 2. Thus, the explicit formula of this recursive
formula is Xn = 1 + 2(3)n.
The method we used in our example is the same with the one used in proof of
the Fibonacci explicit formula.

Quinten Jin, Emre Kocaman Combinatorics



Generating Closed Forms

Now we are going to take a look at how to create an explicit formula from a
recursive formula.

Example

Xn = 4Xn−1 − 3Xn−2 X0 = 3 and X1 = 7 What is the explicit formula?

1. We should find a geometric sequence which satisfies the recursive formula so
we write X n = 4X n−1 − 3X n−2.
2. (x − 1)(x − 3) = 0. x = 1 and x = 3.
3. Since there are two possible geometric sequences, we algebraically combine
them and set up the equations as 3 = A+B and 7 = A+ 3B. (3 is X0 and 7 is
X1)
4.We find A = 1 and B = 2. Thus, the explicit formula of this recursive
formula is Xn = 1 + 2(3)n.
The method we used in our example is the same with the one used in proof of
the Fibonacci explicit formula.

Quinten Jin, Emre Kocaman Combinatorics



Generating Functions

Picking numbers from two boxes, and the two boxes has follows:

Box 1: {1, 2, 3}
Box 2: {2, 3, 4}

The sums obtained by choosing one number from each box are:

1 + 2 = 3

1 + 3 = 4

1 + 4 = 5

2 + 2 = 4

2 + 3 = 5

2 + 4 = 6

3 + 2 = 5

3 + 3 = 6

3 + 4 = 7

Thus, the distribution of sums is: [3, 4, 4, 5, 5, 5, 6, 6, 7].
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Box 1: {1, 2, 3}
Box 2: {2, 3, 4}

The sums obtained by choosing one number from each box are:

1 + 2 = 3

1 + 3 = 4

1 + 4 = 5

2 + 2 = 4

2 + 3 = 5

2 + 4 = 6

3 + 2 = 5

3 + 3 = 6

3 + 4 = 7

Thus, the distribution of sums is: [3, 4, 4, 5, 5, 5, 6, 6, 7].

Quinten Jin, Emre Kocaman Combinatorics



Introduction to generating functions: A generating function is a formal power
series that encodes a sequence a0, a1, a2, . . . as follows:

G(x) =
∞∑
n=0

anx
n

Generating functions for the same problem:The generating function for
choosing numbers from Box 1 is:

G1(x) = x1 + x2 + x3

The generating function for choosing numbers from Box 2 is:

G2(x) = x2 + x3 + x4

G(x) = G1(x) · G2(x) = (x1 + x2 + x3) · (x2 + x3 + x4) = x1 · (x2 + x3 + x4)+

x2 · (x2 + x3 + x4) + x3 · (x2 + x3 + x4)

Simplifying this product gives:

G(x) = x3 + 2x4 + 3x5 + 2x6 + x7
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